A trace theorem for Dirichlet forms on fractals

نویسندگان

  • Masanori Hino
  • Takashi Kumagai
چکیده

We consider a trace theorem for self-similar Dirichlet forms on self-similar sets to self-similar subsets. In particular, we characterize the trace of the domains of Dirichlet forms on the Sierpinski gaskets and the Sierpinski carpets to their boundaries, where boundaries mean the triangles and rectangles which confine gaskets and carpets. As an application, we construct diffusion processes on a collection of fractals called fractal fields, which behave as the appropriate fractal diffusion within each fractal component of the field. MSC: 46E35; 28A80; 31C25; 60J60

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Riesz Potentials and Liouville Operators on Fractals

An analogue to the theory of Riesz potentials and Liouville operators in R for arbitrary fractal d-sets is developed. Corresponding function spaces agree with traces of euclidean Besov spaces on fractals. By means of associated quadratic forms we construct strongly continuous semigroups with Liouville operators as infinitesimal generator. The case of Dirichlet forms is discussed separately. As ...

متن کامل

Self-similar fractals and arithmetic dynamics

‎The concept of self-similarity on subsets of algebraic varieties‎ ‎is defined by considering algebraic endomorphisms of the variety‎ ‎as `similarity' maps‎. ‎Self-similar fractals are subsets of algebraic varieties‎ ‎which can be written as a finite and disjoint union of‎ ‎`similar' copies‎. ‎Fractals provide a framework in which‎, ‎one can‎ ‎unite some results and conjectures in Diophantine g...

متن کامل

Construction of diffusion processes on fractals, d-sets, and general metric measure spaces

We give a sufficient condition to construct non-trivial μ-symmetric diffusion processes on a locally compact metric measure space (M,ρ, μ). These processes are associated with local regular Dirichlet forms which are obtained as continuous parts of Γ-limits for approximating non-local Dirichlet forms. For various fractals, we can use existing estimates to verify our assumptions. This shows that ...

متن کامل

Energy measures and indices of Dirichlet forms, with applications to derivatives on some fractals

We introduce the concept of index for regular Dirichlet forms by means of energy measures, and discuss its properties. In particular, it is proved that the index of strong local regular Dirichlet forms is identical with the martingale dimension of the associated diffusion processes. As an application, a class of self-similar fractals is taken up as an underlying space. We prove that first-order...

متن کامل

Derivations, Dirichlet Forms and Spectral Analysis

We study derivations and Fredholm modules on metric spaces with a Dirichlet form. In particular, on finitely ramified fractals, we show that there is a non-trivial Fredholm module if and only if the fractal is not a tree. This result relates Fredholm modules and topology, and refines and improves known results on p.c.f. fractals.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1986